Yi Cui (Stanford University, SLAC National Accelerator Laboratory)

2022 Vehicle Technologies Virtual Annual Merit Review

Overview

Timeline

- Start: Oct 1, 2018;
- End: Sep 30, 2022;
- Percent complete: 90%

Budget

- · Total project funding
- \$1800k from DOE
- FY21 \$500k; FY22 \$500k

Barriers: Low Coulombic efficiency; Low capacity; High chemical reactivity

Partner: BATT program PI's; SLAC: In-situ X-ray; Amprius Inc.; Stanford: Zhenan Bao

Relevance

- Increase first-cycle Coulombic efficiency via anode prelithiation
- Design prelithiation reagents of high stability in both dry air and ambient air conditions to prelithiate all kinds of anodes
- Design prelithiation process to optimize the reaction process.

Approach

Prelithiation reagents design and synthesis

- Design prelithiation reagents stable in the dry and ambient air condition by exploring inorganic and organic coatings.
- Design prelithiation reagents with tunable prelithiation capacity and no excess lithium concern.

Prelithiation process design

- Utilize pressure to achieve heat-free and solution-free prelithiation.
- Design solution-free in-situ prelithiation process that prelithiates electrodes after cell assembly, preventing cell reassembly.

Electrochemical testing and structural characterization

- Ex-situ transmission electron microscopy
- Ex-sity scanning electron microscopy,
 - Coin cells and pouch cells, and a series of electrochemical tests.

Milestones

9/2022

Month/year	Milestones
9/2021	Demonstrate the role of ultra-thin lithium foil prelithiation to improve good cycle capacity retention in full battery. (Completed
12/2021	Demonstrate a new solvent-free dry prelithiation strategy through in situ prelithiation. (Completed)
3/2022	Demonstrate the in situ prelithiation strategy can delicately contribe prelithiation amount. (Completed)
6/2022	Demonstrate the in situ prelithiation strategy can achieve uniform

Technical Accomplishments

Design ultrathin rGO hosted Li foils (Li@eGF) for prelithiation

- Ultrathin Li@eGF foils of thickness from 0.5 -20 µm are produced, which provide ideal prelithiation capacity.
- Prelithiation with Li@eGF improves initial CE of Si anodes to nearly 100%, as well as Si cyclability.
- · Prelithiation with Li@eGF improves full cell capacity retention.

Yi Cui, Nature Energy 6.8 (2021): 790-798.

Collaboration

Prof. Zhenan Bao, Stanford University; Prof. Michael F. Toney, Stanford University; Amprius Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Proposed Future research

prelithiation. (Completed)

strategy. (On schedule)

Explore new prelithiation reagents with tunable and fit capacity.

Investigate the prelithiation kinetics in the in situ prelithiation

- Explore other prelithiation strategy with high efficiency and controllable prelithiation amount.
- Understand the interaction between prelithiation reagents and the electrolyte by cyro-EM and other advanced characterization techniques.
- Develop new in situ techniques to reveal the prelithiation kinetics.

 Any proposed future work is subject to change based on funding levels.

Summary

- rGO hosted ultrathin Li foils (Li@eGF) are developed as new prelithiation reagents.
- This ultrathin Li foil provide ideal prelithiation capacity without the excess Li concern.
- Li@eGF also serves as a protective layer to reduces cracks in Si electrodes and improves Si cyclability.
- Prelithiation with Li@eGF compensates the initial battery capacity loss and increases battery capacity retention.